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Abstract 

Objective: Marijuana (Cannabis spp.) growing operations (MGO) in California have increased substantially since the 
mid‑1990s. One environmental side‑effect of MGOs is the extensive use of anticoagulant rodenticides (AR) to prevent 
damage to marijuana plants caused by wild rodents. In association with a long‑term demographic study, we report 
on an observation of brodifacoum AR exposure in a threatened species, the northern spotted owl (Strix occidentalis 
caurina), found freshly dead within 669–1347 m of at least seven active MGOs.

Results: Liver and blood samples from the dead northern spotted owl were tested for 12 rodenticides. Brodifacoum 
was the only rodenticide detected in the liver (33.3–36.3 ng/g) and blood (0.48–0.54 ng/ml). Based on necropsy 
results, it was unclear what role brodifacoum had in the death of this bird. However, fatal AR poisoning has been 
previously reported in owls with relatively low levels of brodifacoum residues in the liver. One likely mechanism of AR 
transmission from MGOs to northern spotted owls in California is through ingestion of AR contaminated prey that 
frequent MGOs. The proliferation of MGOs with their use of ARs in forested landscapes used by northern spotted owls 
may pose an additional stressor for this threatened species.
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Introduction
The number and extent of marijuana (Cannabis spp.) 
growing operations (MGO) in California have increased 
substantially since the mid-1990s, with a mix of illegal 
clandestine operations and those growing for medical or, 
recently, recreational use [1–3]. California is the largest 
producer of marijuana in the U.S., with Humboldt, Trin-
ity and Mendocino Counties the epicenter for production 
[4]. There are  ~  15,000 documented MGOs in Hum-
boldt County [5] and an estimated 4428 of these were 
visible outdoor MGOs on private lands (either as green-
houses, crop fields, or both) in 53.6% of the watersheds 
[3]. One environmental side-effect of marijuana produc-
tion in California is the extensive use of anticoagulant 

rodenticides (AR) to prevent damage to plants caused by 
wild rodents [6, 7]. Oftentimes, substantial amounts of 
AR (up to  ~  25  kg) are found at illegal MGOs on pub-
lic lands [6–9]. Although a large number of MGOs on 
private lands are quasi-legal in California, the distinc-
tion between illegal and legal operations for enforcement 
purposes is difficult. Because marijuana is still federally 
illegal, no pesticides are registered for its use as an agri-
cultural crop [10]. For these reasons, regulatory compli-
ance on quasi-legal MGOs is uncertain and assumed to 
be low. Enforcement of regulations by government agen-
cies is minimal because of the sheer number of unpermit-
ted MGOs and remoteness of these operations [3, 10, 11]. 
For example, only 15% of MGOs in Humboldt County 
have applied for permits with only 0.6% approved, sug-
gesting that over 85% of MGOs in the county have not 
applied to be under regulatory compliance [5]. Thus, 
AR use on MGOs in California is probably ubiquitous, 
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regardless of legality, because of the perceived threat of 
wild rodent damage to marijuana crops on MGOs and 
the lack of permitting and enforcement [12, 13].

Secondary poisoning of non-target wildlife (species 
unintentionally exposed to AR) from ARs has become a 
re-emerging threat in California, especially around out-
door MGOs on or near public lands, which are consid-
ered a primary source of AR in wild environments [6, 
7, 9, 14]. For example, dead wildlife from AR poisoning 
were found at 21.9% of 41 MGOs investigated in Hum-
boldt, Trinity, and Siskiyou counties; these included 
bears, foxes, fisher (Pekania pennant), squirrels, deer, 
and passerine birds [15]. In addition, liver residues in 
wild rodents at MGOs also tested positive for ARs [15]. 
Although raptors found dead with signs of AR poisoning 
were not found at MGOs, they prey on rodents affected 
by AR at MGOs and possibly die elsewhere. ARs in prey 
presents a risk to owls that subsequently bioaccumu-
late ARs in tissues, especially the liver [16], taking up to 
15 days to produce lethal concentrations. Thus, owls are 
at high-risk for secondary AR poisoning because of their 
specialization on rodent prey [16]. For example, 62–90% 
of carcasses from three owl species in western Canada 
had detectable residues from ≥  1 AR, even death from 
AR poisoning was determined in only 2–12% of cases 
[17].

Of particular concern is the threat of secondary AR 
poisoning in northern spotted owls (Strix occidenta-
lis caurina), a threatened species under the Endangered 
Species Act [18] currently experiencing 2.3–3.0% annual 
population declines in California due to a number of 
stressors [19]. MGOs occur within areas used by north-
ern spotted owls, which have the potential to be exposed 
to ARs through their primary prey in northern Califor-
nia, dusky-footed woodrats (Neotoma fuscipes). Dusky-
footed woodrats are also perceived by growers as a threat 
to marijuana plants because they forage on young plants 
in the spring and use the plants to build nests [12, 13]. 
Recently, 70% of northern spotted owls found dead had 
evidence of being exposed to ARs, with the hypothesis 
that increased MGOs on the landscape were the primary 
source [20]. However, AR use on MGOs has not been 
explicitly linked with northern spotted owl exposures.

In association with a long-term demographic study, we 
report on brodifacoum exposure in a northern spotted 
owl found freshly dead in the vicinity of at least 7 active 
MGOs on private inholdings within a National For-
est (Fig. 1) during a routine survey to detect owls. Find-
ing a freshly dead northern spotted owl in the woods is 
a very rare event; this is the first time we have encoun-
tered a recently deceased adult during 9216 foot surveys 
on 95 spotted owl territories over a 33-year study. Thus, 
this observation is important in establishing a potential 

linkage that warrants further research to determine 
the magnitude of this threat to northern spotted owl 
populations.

Main text
Methods
A female northern spotted owl was found dead 5 April 
2017 in a territory that had been monitored since 1985 
[21] south of Willow Creek, Humboldt County, Califor-
nia. The female was marked with a USGS numbered band 
and a unique colored band in 2008 and had occupied 
the territory since 2016. The female was estimated to be 
dead ≤  24  h because (1) the carcass was fresh with the 
eyes not sunken, (2) there were no fly larvae on the car-
cass, and (3) the male owl attempted to deliver a mouse 
to the carcass for ~ 5 min.

The carcass was collected and shipped chilled to the 
USGS National Wildlife Health Center (NWHC), Madi-
son, WI for necropsy. Liver and blood samples were 
taken and sent for AR residue analysis at the USDA-
APHIS National Wildlife Research Center, Fort Collins, 
CO.

The liver and blood samples were subsequently tested 
for 11 anticoagulant rodenticides (coumafuryl, coumate-
tralyl, pindone, warfarin, coumachlor, diphacinone, chlo-
rophacinone, bromadiolone, difenacoum, brodifacoum, 
difethialone) and 1 neurotoxicant rodenticide metabolite 
(desmethyl bromethalin) (see Additional file  1 for exact 
methods).

To identify potential sources of AR, we first delineated 
the potential foraging area for northern spotted owls on 
this particular territory using night and day locations 
of northern spotted owls detected during surveys con-
ducted from 1985 to 2017 during our demography study 
[22]. Following [3], we scanned high-resolution satellite 
imagery from May 2016 in Google  Earth® (www.google.
com/earth/) around the polygon formed by the owl loca-
tions to search for visible AR sources, such as residences 
and MGOs, within this particular owl territory. We also 
included locations of illegal MGOs found by law enforce-
ment agencies (M. Gabriel, unpublished data). All MGOs 
were known to local law enforcement authorities. We 
were unable to determine whether the MGOs identified 
were using ARs. As one study noted [23], most landown-
ers with MGOs are unwilling to allow visitors to their 
operation and it is usually dangerous for researchers to 
approach them. All locational data was entered into a 
geographic information system (ArcGIS  10®) to develop 
maps (e.g., Fig.  1) and measure distances from the owl 
mortality site and potential sources of AR poisoning. 
Because of legal restrictions, specific locational informa-
tion for either the spotted owl or MGOs on private lands 
cannot be provided.

http://www.google.com/earth/
http://www.google.com/earth/
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Results and discussion
The necropsy found that the female was reproductively 
active with developing follicles in the ovary, was emaci-
ated, and heavily parasitized with large numbers of Leu-
cocytozoon spp. protozoa in red blood cells and Elmeria 
spp., coccidia and Capillariid spp. in the intestine. The 
female weighed 490  g when found, which was 73.9% of 
the mean weight for female northern spotted owls [24]; 
no baseline weight had been taken for this individual 
when first captured in 2008. No other abnormalities, 
including trauma, were detected. The owl tested negative 
for avian influenza viruses, West Nile virus, and exposure 
to lead. Brain cholinesterase levels were not depressed, 
suggesting no acute exposure to cholinesterase-inhibiting 

toxicants, such as organophosphate or carbamate pesti-
cides. Proximate cause of death was diagnosed as emacia-
tion and parasitism.

Brodifacoum was the only rodenticide detected in the 
liver (33.3–36.3  ng/g) or the blood (0.48–0.54  ng/ml) 
(Table 1). In this case, exposure to brodifacoum was not 
the primary cause of death of the northern spotted owl 
examined here, as there was no sign of internal hemor-
rhage indicative of AR poisoning. However, the levels 
of brodifacoum residues found in the owl’s liver have 
been associated with lethal AR poisoning in other owl 
species, such as great horned owls (Bubo virginianus) 
with liver residues as low as 10  ng/g [25]. Two north-
ern spotted owls submitted to the NWHC in the 1990s 

Fig. 1 Location of dead female northern spotted owl (red star) on an established territory (blue dashed line) in Humboldt County, California 
in proximity to known marijuana growing operations (red polygons). An illegal clandestine MGO eliminated in 2015 is shown as a red triangle. 
Yellow‑hatched areas are private inholdings in a national forest. Black dots are roost and nest sites used by northern spotted owls and blue dots are 
nocturnal detections of spotted owls from surveys conducted on this territory from 1985 to 2017. Aerial views of MGOs can be seen in [3, 41]
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had brodifacoum liver residues of 50.0 and 100 ng/g and 
signs of hemorrhaging (NWHC Case Numbers 10128 
and 13799). Although not directly linked as the cause of 
mortality, exposure to brodifacoum in the owl we found 
may have resulted in a sub-lethal exposure. While sub-
lethal effects of brodifacoum on non-target wildlife are 
poorly understood, they are hypothesized to include ane-
mic lethargy that impairs hunting ability leading to loss 
of body mass, and increased susceptibility to disease [26, 
27]. For example, sub-lethal exposures to brodifacoum 
slowed growth in Japanese quail [28] and was associated 
with an outbreak of notoedric mange in bobcats (Lynx 
rufus), which led to a 64% reduction in survival [29]. 
Combined with the northern spotted owl’s reproductive 
status and heavy parasitism, brodifacoum may have been 
an additional contributor to the owl’s death.

Brodifacoum is commonly used in household, indus-
trial and agricultural settings and is often found at illegal 
clandestine MGOs [5–8] to prevent rodents from damag-
ing the stalks of marijuana plants where it is applied at 
plant bases and around MGO perimeters [6]. The dead 
northern spotted owl was found within 669–1347  m of 
at least 7 active MGOs on private inholdings within a 
National Forest (Fig.  1). In 2015, an illegal clandestine 
MGO with  ~  23  kg of brodifacoum-laced bait was dis-
covered 450  m from the recovery location of this dead 
owl (M. Gabriel, unpublished data, Fig.  1), indicating 
that other undetected MGOs may have been nearby. 
Given the documented use of brodifacoum on MGOs, it 

is highly likely that the source of the brodifacoum resi-
dues found in the dead owl were from one or more of 
the MGOs within its territory (Fig. 1); we were unable to 
identify any other potential sources.

One probable mechanism of AR transmission from 
MGOs to northern spotted owls in this region of Cali-
fornia is through ingestion of dusky-footed woodrats, 
which are a dominant prey of spotted owls in this area 
[30]. Dusky-footed woodrats are abundant in early-seral 
stages, such as openings created by fire, timber harvests, 
or (presumably) MGOs, and have specialized gut micro-
biomes that allow them to digest toxic secondary plant 
compounds and fibrous plant material [31], typical of 
marijuana plants. In addition, dusky-footed woodrats 
incorporate plants with high monoterpene content [32, 
33], such as California bay (Umbellularia californica), 
into their nests, with evidence that these plants act as 
larvicides and repellants against fleas [34, 35]. Cannabis 
contains similar monoterpenes and can also act as a lar-
vicide against mosquito and other insect larvae [36–38]; 
anecdotal observations indicate that woodrats incorpo-
rate marijuana stalks into their nests [13]. Both Califor-
nia bay and marijuana plants are aromatic [34, 39] and 
woodrats may be able to detect these on the landscape 
through olfactory cues. Northern spotted owls in Cali-
fornia also tend to forage near edges of openings when 
woodrats predominate in their diet [40]. In forested 
landscapes in Humboldt County, California, MGOs have 
generated increased edge with forest areas and increased 

Table 1 Rodenticide analysis of liver and blood from deceased northern spotted owl

a Detection limit (DL) is the lowest concentration of analyte in a sample that can be detected but not necessarily quantified as an exact concentration
b Quantitation limit (QL) is the lowest concentration of analyte that can be quantified with suitable precision and accuracy
c Results are either from triplicate replications or not detected (ND)
d Values under DL and QL are for bromadiolone A and B, respectively
e Tested for the metabolite desmethyl bromethalin
f Estimated based on previous multi-rodenticide analyses; NE = no estimate

Rodenticide Observed concentration Detection  limita Quantitation  limitb

Liverc (ng/g) Bloodc (ng/ml) Liver (ng/g) Blood (ng/g) Liver (ng/g) Blood (ng/g)

Brodifacoum 33.3, 36.3, 35.7 0.54, 0.48, ND 5.80 0.45 19.30 1.48

Bromadioloned ND ND 0.59, 0.78 0.09, 0.13 1.96, 2.59 0.28, 0.42

Bromethaline ND ND 5.10 0.41 17.00 1.37

Chlorophacinone ND ND 13.00 0.28 42.50 0.95

Coumachlor ND ND 0.33 0.03 1.09 0.09

Coumatetralyl ND ND 8.80 0.60 29.20 1.99

Coumafuryl ND ND 2.40 0.23 8.11 0.76

Difenacoum ND ND 27.00 3.30 89.80 11.00

Difethialone ND ND 4.50 0.25 15.1 0.84

Diphacinone ND ND 8.50 1.10 28.40 3.53

Pindonef ND ND 75.00 10.00 NE NE

Warfarin ND ND 1.80 0.20 5.90 0.68



Page 5 of 7Franklin et al. BMC Res Notes  (2018) 11:94 

patch shape complexity [41], landscape elements that 
also contribute to high-quality habitat for northern spot-
ted owls [30].

Based on this, we propose a mechanistic hypothesis on 
the linkage between MGOs and secondary AR poison-
ing of northern spotted owls (Fig. 2), where woodrats are 
attracted to MGOs by the presence of marijuana plants 
for food and larvicidal nest material and encounter ARs 
in rodent baits while foraging on MGOs. Northern spot-
ted owls are also attracted to MGOs because of the edge 
habitat created by MGOs and increased prey movement 
across those edges. This edge becomes the area where 
owls then prey on AR-contaminated woodrats.

Conclusions
The observation of a northern spotted owl with AR resi-
dues in proximity to numerous MGOs further suggests 
the potential linkage between MGOs and AR exposure 
for this threatened species as another additive stressor. 
Thus, outdoor MGOs in forested landscapes may provide 
resources for prey and foraging opportunities for north-
ern spotted owls but with potentially lethal consequences 
for both.

Limitations
We were unable to definitely identify MGOs as the source 
for the brodifacoum found in the dead northern spot-
ted owl. However, we were not able to identify any other 

potential sources of AR within the territory used by this 
particular owl. Thus, our case study provides evidence 
to support the hypothesis that MGOs may constitute an 
additional threat to northern spotted owl populations 
in northwestern California, a hypothesis that should be 
examined with further research.
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